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Abstract. Psammodynamics denotes a combination of seismo- and thermodynamics for sand-like materials.

Monotonous deformations of samples lead first to an alignment of the hidden state and then to a state limit.

These two attractors are partly reproduced by elastoplastic or hypoplastic relations, and also with an energetic

approach, this enables validations and calibrations. Monotonous plus cyclic deformations of samples lead to

asymptotic stress cycles, these attractors are partly reproduced by elastoplastic or hypoplastic relations with

hidden variables and by the energetic approach. The average evolution up to attractors is captured by a novel

seismo-hypoplastic relation with energetic support. Stabilization and destabilization with pulsating seismicity

are introduced with tower models, they mean an attractor or a repeller. A collapse at the verge of convexity of

the free energy has a mode which is related with an eigenvector. This concept could be extended for solids and

thermal activation.

1 INTRODUCTION

Attractors were observed in reality and enhanced physical theories. A group of galaxies behind Virgo tends to a
black hole, this Great Attractor corresponds to a monotonous attractor (asymptote) of the equations of motion
and tends to deterministic chaos indicating a strange attractor. More often cosmic clouds tend to state cycles,
e.g. the Solar system, but can also get chaotic. Newton explained planetary cycles, Poincaré introduced for it the
chaos theory. Closed aggregates of atoms and molecules with attraction and repulsion tend to thermodynamic
equilibria or to reaction cycles, and get chaotic at critical points. Atoms have periodic quantum states which
result as eigenmodes of Schrödinger’s equation.

Such systems are conservative, i.e. particles are not changed by interactions or are exactly reconstituted
in reactions, therefore mutual forces are given by relative positions via gradients of potential energies. This
enables permanent state cycles at different scales, linear evolution equations and Boltzmann statistics. A stable
compound of sand, water and solids remains at equilibrium if it is not disturbed. Otherwise rearrangements and
force redistributions change the grains at least a little, so interaction forces are not determined by potentials
and relative positions, energy is dissipated and no two grains are equal. This means that granular systems are
not conservative. Monotonous, cyclic and strange attractors can only occur therefore by driving with energy
supply, and the granular degradation should be taken into account.

Cylindrical psammoid (i.e. sand-like) samples have two degrees of freedom, axial and radial, if they are uni-
form. Their state is described by two Cauchy stress components (σ1 and σ2 � σ3), the void ratio e and internal
variables which are hidden (Physical Soil Mechanics, Gudehus 2010, PSM in the sequel). As outlined in Sec. 2
proportional deformations lead first to an alignment of the hidden state so that this is no more needed explicitly.
Continued deformation leads to a state limit where the sample loses its uniformity by localized shearing with
dilation or contraction. These two attractors are partly reproduced by elastoplastic and hypoplastic relations
without hidden varables, this serves to delimit the range of validity and to calibrate parameters therein (PSM).

The partial success of this approach calls for a physical explanation by means of energies. This was qual-
itatively achieved with a theory named Granular Solid Hydrodynamics (GSH, Jiang and Liu 2009). In the



forthcoming paper ’Seismo- and thermodynamics of granular solids’ (Gudehus et al. 2010, STG in the sequel)
this theory was supported by further arguments, modified and quantified. Instead of GSH it may be called
psammodynamics as psammoids are matter in its own right. This concept is shown in Sec. 2 to reproduce
hypoplastic relations within bounds given by the two attractors mentioned above.

Attractors for non-monotonous evolutions of cylindrical samples are introduced in Sec. 3. As long as
localization and decay are avoided combinations of isochoric monotonous and cyclic deformations lead to stress
cycles, these attractors serve to judge and quantify elastoplastic and hypoplastic relations with hidden variables
(PSM). A unified representation enables an evolution equation relating average changes of shape and state.
This rate-independent equation is supported by STG, but more experiments and simulations will be needed for
a detailed validation and calibration.

Systems with sand and attached solids are considered in Sec. 4. Model towers serve to introduce the total
free energy which is needed to judge stability, stabilization and destabilization. Other than with an elastic
ground sand gets rearranged by pulsating seismicity, with it the system can have an attractor or a repeller. The
novel constitutive model is thought to predict gradual changes of position and state, whereas an impending
collapse can as yet at best be estimated. Pore water and elastic structures can be incorporated, this concept
works for a wide range of initial and boundary conditions. After a conclusion it is indicated in Sec. 4 how it
could be applied for solids and with thermal activation.

2 MONOTONOUS DEFORMATIONS OF SAMPLES

Some evolutions of cylindrical sand samples (like in perfect so-called triaxial tests, PSM) are shown in Fig.
1. The imposed strain paths (a, axial ε1, radial ε2 � ε3) may be proportional with contraction (A), constant
volume (B) or dilation (C). The obtained stress path (b) tends to a straight line from the origin (A), a point (B)
or a straight line towards the origin (C), respectively. This behavior is also visible from response polars which
represent stress rates for unit strain rates with different directions. As plotted they resemble ellipses which are
bigger for higher pressures and more eccentric for bigger ratios of shear and normal stress. A plot of void ratio
e versus mean pressure p � pσ1�2σ3q{3 exhibits an approach to limit curves (c) with p-increase (A), stationary
p (B) or p-decrease (C).
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Figure 1: a) Proportional deformations of a cylindrical psammoid sample, b) induced stress paths with
response polars, c) induced evolutions of void ratio versus pressure

These evolutions, and similar ones with monotonous strain paths, are characterized by two kinds of attractors.
First the hidden internal state is aligned by the deformation to the stress state so that it is not needed explicitly in
constitutive relations. Thereafter the sample approaches a state limit with a loss of uniformity, viz. compaction
bands (A), shear bands (B) or decay (C). Elastoplastic relations with density hardening capture contractant
and isochoric paths except for very low or high pressures, very dilatant paths with low relative void ratios are
missed. Hypoplastic relations imply more realistic response polars (Kolymbas and Wu 1993) and work for a
wider range of void ratios and pressures. Both models ignore the spontaneous loss of uniformity near state
limits. Shear localizations can be captured by means of additional polar quantities, they arise spontaneously
with bifurcation (Vardoulakis and Georgopoulos 2005 ) and can tend to fractal patterns (PSM).

The grains are jammed so that they have a specific elastic energy we which is a function of the average elastic
strain components ui and the density ρ or void ratio e. The elastic stress πi is conjugated with ui via we by
πi � �Bwe{Bui. Due to increasing contact flats we should depend on ∆ � �Σui by we9∆m with an exponent



m according to the grain roughness. Jiang and Liu (2009) propose m � 2.5, but m � 3 would suit better to the
observed stiffness Bp{B∆9p1{2. At the verge of convexity of we the grain skeleton is no more stable, we will see
below what that means. Jiang and Liu use a critical friction ratio for this verge, and an elaborate dependence
on ρ so that we9∆2.5 is slightly violated.

The crackling noise during deformations indicates a heat-like seismic energy ws which is not stored. In
GSH this depends on a granular or seismic temperature Tg by ws � bρT 2

g {2. The grains get totally unjammed
by minute continuous shaking so that we vanishes and the pressure gets purely seismic and hydrostatic. Such
seismodynamic equilibria with high ρ are stable due to ws9T 2

g . Strong shaking causes granular boiling with
expansion and convection cells, then ws9Tg holds as for a granular gas. Experiments indicate a boiling tem-
perature Tb � 109 K like in a Red Giant. Thus the factor b was estimated, this leads to ws   10�5we for
deformations with rates D   10�3/s and p ¡ 1kPa (STG).

The seismic energy gets lost into heat with a rate 9ws9 � ws and a half-life ts  � 10�3s for D ¡ 10�5/s
as kinks lose their energy after passing a certain number of grain contacts. ws is generated by rearrangements
(intensity D �aǫ2

1
� 2ǫ2

2
) with a granular viscosity ηg. The balance of seismic energy by GSH reads

bρ

2

dT 2

g

dt
� �γT 2

g � ηgD
2 (1)

wherein γ and ηg increase with Tg from low values for Tg � 0. For slow monotonous deformations Tg � D
a
ηg{γ

is obtained as D is practically constant for much longer times than the seismic half-life ts. With a factor λ
which will be explained below λ

a
ηg{γ ranges from ca. 1 for Tg � 0 to ca. 100 for Tg ¡ Th � 100K (STG).

The elastic strain ui changes by stretching and seismic relaxation within GSH via9ui � p1� αq 9εi � λTgpu�i � δi∆{10q (2)

with u�i for the deviatoric part. The transmission factor α depends on Tg by α � αh tanhpT 2

g {T 2

hq (STG) with
αh � 0.8 (GSH). The Cauchy stress σi is smaller than the elastic one πi by σ � p1 � αqπi as the contacts
are seismically softened. Imagine a bicycle with a belt connecting smooth wheels instead of a chain connecting
indented wheels. Stick-slip by shaking reduces the transmission and the driving moment by the same factor,
similarly grain chains are imperfect and soft by seismicity.

Combining these relations yields the stress rate9σi � p1� αq 9πi � 9απi � �p1� αqHij

�p1� αq 9εj �Dλ


ηg

γ
pu�i � δi∆{10q�� 9απi (3)

with the differential stiffness Hij � Bπi{Buj. In case of a monotonous deformation with constant intensity D α

tends to αh, λ
a
ηg{γ to ca. 100 and Tg gets stationary. Then (3) goes over into a hypoplastic relation which

is thus energetically justified (GSH). The transition to the first attractor introduced above is indicated by a
stationary crackling noise, which is in fact pressure-independent and louder for higher D.

In the hypoplastic range, with Tb " Tg ¡ Th � 100K, ηg9Tg and γ9Tg holds almost exactly by GSH and
STG so that Tg and D are simultaneously constant. This can be attributed to a rate of seismic kinks 9D due to
evolving granular force chains with a constant transmission factor α. With higher D and thus Tg seismic kinks
are more often generated (bigger ηg) and propagate less far due to a stronger seismically triggered dissipation
(bigger γ). The acoustic emission reflects a part of this seismic activity as some spectral fractions are enhanced
by resonance of the sample in the apparatus, while higher fractions are damped or not audible. The seismometry

is not as well developed as the thermometry.
Consider e.g. a sample with p �100kPa and D � 10�3/s. It has we �10J/m3, Tg � 105K, ws � 10�6J/m3,

and a seismic half-life ts � 10�5s. If a group of grains is at its verge of stability a minute seismic wave triggers a
kind of snap-through. This micro-hysteresis produces heat at sliding contact flats (as observed by Luong 1982
with thermography) and a kink with far less energy which is propagated and dissipated as indicated above. The
dissipation power by STG is Q � pD as required for dry friction. With D � 10�6/s the seismic temperature
Tg, the rate of kinks, the inverse of the half-length of kink propagation and of the seismic half-life ts, and Q are
100 times smaller than with D � 10�3/s for the same p.



With on-going deformation a stability limit is attained where the elastic energy we is no more convex. A
stronger and wilder crackling noise indicates a dramatic increase of seismicity, the approach to a state limit is
thus observable. The eigenvector of we for the verge of convexity determines a collapse mode 9ε2{ 9ε1 for which the
imposed work is dissipated with maximal seismicity (STG). A similar maximality was assumed by Vardoulakis
et al. (1978) for the bifurcation into localized shearing. The increasing fluctuations cause fractal patterns of
shear bands (PSM) with polar quantities (Vardoulakis and Georgopoulos 2005), the emerging new degrees of
freedom imply a granular chain reaction. Other than with thermodynamic sytems such critical phenomena
require energy supply as the granular interactions are not conservative.

3 PULSATING DEFORMATIONS OF SAMPLES

A water-saturated undrained sand sample may be deformed with an amplitude εc and an increase εa per cycle,
Fig. 2a. The zig-zag stress path tends to an asymptotic cycle which is butterfly-like for εa � 0 and lenticular
for εa{εc ¥ ca. 1/100 (b). This driven attractor attains the critical ratio of shear and normal stress twice for
εa � 0 and once otherwise. With low εc, ǫa � 0 and moderate ρ the average pressure p̄ tends to zero, whereas
an asymptotic p̄ ¡ 0 is obtained with sufficient εa{εc.
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Figure 2: a) Deformation of a sample with pulsation and isochoric trend, b) asymptotic stress cycles without
(left) and with isochoric trend (right), c) asymptotic void ratio versus pressure and equivalent pressure for an
attractor, relative void ratio for p � 0 (d) and average stress ratio (e) versus ratio of trend and amplitude for

attractors

These attractors and the approach to them are well reproduced, except for small εa{εc and low ρ, by an
elastoplastic relation with back stress (Taiebat and Dafalias 2007). The shortcoming could be removed with limit
void ratios as in Fig.1c (PSM). The attractors are obtained by a hypoplastic model with intergranular strain
(Niemunis and Herle 1997) for a wider range of ǫa{ǫc and ρ, but with flatter butterflies and faster approach
than observed (PSM). Niemunis et al. (2005) proposed an accumulation model for the evolution of average
shape and state with pulsations. It requires many empirical factors from triaxial tests and can lead close to the
indicated attractors except for big εa{εc, then the average stress ratio pσ̄1 � σ̄2q{p is critical so that pσ1 �σ2q{p
is temporarily overcritical. The attractors for it can be captured by

p̄ � pepacεmc �M{Mcq ; σ̄1 � σ̄2 �Mp̄ (4)



with an e-equivalent pressure pe by Fig. 2c and d, and a stress ratio M by Fig. 2e. The exponent is m � 2, the
maximal M �Mc is given by a critical friction angle. M and the relative void ratio re0 � pe0� edoq{peco� edoq
increase from zero to a plateau for growing ǫa{ǫc. Mc, eco, edo and the granulate hardness hs are hypoplastic
parameters (PSM). Parameters for the increase of re and M{Mc with ǫa{ǫc and the factor ac are additionally
needed. The case without isochoric trend may be called meso-hysteresis as it occurs at the scale of samples.

Evolutions of the average stress with these attractors as asymptotes can be captured by
σi�Mijrεj �p�ap̄{pe � bεa � cεmc qmjs (5)

wherein the square instead of a dot denotes rates per number of cycles instead of time. Stiffness Mij and flow
directionmj depend on σi�pd instead of σi by hypoplastic relations (Niemunis 2003, PSM). Therein the seismic
pulsation pressure is pd � p̄p1 �M{Mcq so that a steady state is obtained for εa{εc ¡ 0 as shown in Fig. 2b.
The factors a, b and c depend on εa{εc so that Fig. 2d and e are reproduced.

Further specification and calibration require experiments and numerical simulations. Evolutions with stress
cycles can be incorporated by means of control cycles with an elastoplastic or hypoplastic relation with hidden
variables. This idea is taken over from Niemunis et al. (2005) and enables to use stress-controlled tests. (5)
resembles the relation by Niemunis et al. (2005), but requires less parameters and implies the attractors. The
extension with tensors for arbitrary deformations is likewise straightforward, this is needed for frame-indifference
and applications to boundary value problems. The attractors enable a calibration by a single multi-stage triaxial
test.

(5) is energetically justified by means of (3). Rate-independence is obtained with period times which exceed
seismic half-lives by far (STG). Except for big εa{εc, where hypoplastic behavior with nearly stationary Tg is
obtained, the seismicity pulsates between very low hypoelastic and moderate hypoplastic amounts. The term9απi turned out negligible in simulations with lab-typical D, this is obtained with the proposed αpTgq (STG).
The integration of 9σi over one period, for getting average changes of shape and state in one cycle by division
through its duration, can be simplified by taking averages of stiffness Hij and elastic strain ui. The stronger
pulsation of λ

a
ηg{γ between ca. 1 and 100, and of α between 0 and ca. 0.8, is nearly cancelled in the termp1�αq2 9ǫi so that the average trend remains as the first term in (5). The pulsation of p1�αqλaηg{γ, however,

leads to additional terms as in (5) and causes an average reduction of ui which is represented by pd. The average
differential stiffness Mij is smaller than the elastic Hij due to the average transmission by p1� αq.

This qualitative support of the proposed seismo-hypoplastc relation will not be impaired by improvements of
GSH. Qualitatively realistic attractors are obtained numerically with the present version (STG). The pressure
pd represents the average softening by the pulsating seismicity, it works like an excess pore pressure. The nearly
complete seismic relaxation for εa � 0 and small εc by (5) comes close to a seismodynamic equilibrium, the
pressure p̄9εmc with m � 2 is due to average jamming in case of sufficient density. The stronger jamming with
increasing εa{εc is due to the built-up of elastic strain by the first term in (2). The hypoplastic limit by (5) for
big εa{εc will also be obtained with variants of GSH.

4 STABILIZATION AND DESTABILIZATION

A model tower stands safely upon an elastic base with a wide foundation plate, Fig. 3a. A laser pointer on
top shows at the ceiling that the tower returns to an upright position (autogeneous attractor) after any small
disturbance. The free energy of this conservative system, F � Fg � Fe with gravitational and elastic parts,
changes with a tilt ψ from F0 for ψ � 0 by p�ag � aeqψ2. Therein ag is given by mass and centre of gravity, ae
by the rotational base stiffness. Stability requires ag   ae so that F is minimal for ψ � 0.

With a smaller plate the tower is no more stable (Fig. 3b) as it has ag ¡ ae. Then the upright position is
an autogeneous repeller as any tilt causes a spontaneous increase of kinetic energy at the expense of Fg. At a
critical point with ag � ae the upright position is indifferent as F does not change with small ψ. More precisely
speaking, there is a fan of eigendirections with vanishing second variation of the free energy F . This holds true
also for conservative systems with more degrees of freedom: equilibrium means δF � 0, at a critical point a
collapse mode is given by an eigenvector for δ2F � 0, beyond it kinetic energy is released.

The tower with the wider plate stands also safely upon dense dry sand. If it is quasi-statically loaded by a
swing (Fig. 3c) it remains in an upright position, but sinks gradually by minute amounts. If it was slightly tilted
after placement on dense sand it returns gradually by swinging (one can see that with the laser pointer) and



a) b)
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Figure 3: Model tower upon elastic base with sufficient (a) and insufficient foundation (b), and upon dense
sand with stabilization (c) and destabilization (d) by a swing

goes on to sink slightly. A microphone reveals a pulsating crackling noise, so one may speak of a seismogeneous
attractor with macro-hysteresis. This stabilization occurs also by repeated shocks at the base like an earthquake.

The tower with the smaller plate on dense sand (Fig. 3d) behaves differently. It tilts and sinks gradually
from an upright position by swinging, so we have a seismogeneous repeller. When the tower has reached a
critical tilt it topples spontaneously with more and more crackling noise. This seismogeneous destabilization

occurs likewise with repeated base shocks. The collapse requires an amplitude-independent critical tilt and has
a mode which is determined by mass and dimensions of the tower plus foundation and by the density of the
sand nearby.

A stabilization occurred repeatedly with a TV tower in Moscow and with gravity offshore structures: after
tilting in a gale the structures turned upright again and sunk gradually with normal wind or waves. The
seismogeneous stabilization with re-densification can occur without back-tilt, e.g. with piles, and the gradual
displacements can impair the serviceability, e.g. of machines or tracks. A destabilization can happen more
dramatically with water: structures can suddenly slump in loose saturated sand, originally dense sand can be
gradually dilated and offshore structures can topple after having reached a critical point.

The importance is evident, but published mechanical models are rather insufficient. So can the proposed



psammodynamic concept do better, at least for our model towers on dry sand? The free energy is again
F � Fg�Fe as its seismic part is negligible (cf. Sec. 2), but its degrees of freedom are not as simple and unique
as for conservative systems with elastic ground. The pulsating seismicity triggers rearrangements and stress
redistributions, F drops gradually with decreasing rate for stabilization and increasing rate for destabilization.
At a critical point F drops spontaneously with increasing seismicity and kinetic energy of the average motion,
until the toppling tower reaches the ground.

The swing produces quasi-static evolutions in the sand, like wind or waves in situ. The specific seismic
energy we, though far smaller than the elastic one we except near free surfaces, can be bigger than the kinetic
energy of average displacements as long as the system is stable. Then the evolution is rate-independent as shown
in Sec. 3, a tensorial extension of (5) could be employed. The field of cyclic deformation amplitudes could be
calculated with a validated and calibrated elastoplastic or hypoplastic model with hidden variables for a few
control cycles, as proposed by Niemunis et al. (2005) an updating is needed after substantial changes of average
position and state field. This works also with constraints by pore water and embedded elastic structures, then
the relaxation of the grain skeleton by pulsating seismicity can play a bigger role.

This approach works also with destabilizations, but was not yet properly worked out for critical points.
For a tower upon dry sand an impending collapse may be indicated by the impossibility to get quasi-static
hypoplastic solutions. A proper mode of collapse should result from an eigenvalue of the total free energy as a
functional of configuration and state field. It is not yet known how this could work with finite elements, i.e. with
an eigenvector in a Sobolev space. It appears that spontaneous granular chain reactions get increasingly fractal
by localizations, so extended continuum approaches are required (with fractional calculus?). Localizations are
more complex with pore water and gas if the grain skeleton opens into channels or films (PSM).

5 CONCLUSIONS AND OUTLOOK

The dynamics of sand-like matter (psammoids), called psammodynamics, can be captured by means of attractors
and energetics. Monotonous deformations cause an alignment of the internal state so that this is not needed
explicitly. The response is better captured by hypoplastic than by elastoplastic relations, this is justified with
a granular temperature which is proportional to the intensity of stretching D. The seismic energy is stationary
for constant D as its loss into heat is compensated by its generation by D. At state limits the elastic energy is at
the verge of convexity, thus the seismic energy grows dramatically by imposed work and triggers localizations.

Samples with average plus cyclic deformations tend to stress cycles or skeleton decay. These attractors are
partly reproduced by elastoplastic or hypoplastic relations with back stress or intergranular strain, respectively,
as hidden variables. Attractors are proposed for evolutions of average shape and state, and also obtained with
a novel seismo-hypoplastic relation. This is justified with a pulsating seismicity in the subcritical range which
causes an average softening of the grain skeleton. As for monotonous deformations the rate-independence is
justified as D is nearly constant over times which exceed by far the time for the transition of seismic energy into
heat. The crackling noise and the range of hysteresis from micro (grain) to meso (sample) indicate fractality.

Boundary conditions with pulsating seismicity (macro-hysteresis) can lead to stabilization or destabilization
of towers upon sand. Depending on the foundation width the upright position can work as attractor or repeller.
In the second case the tower tends to a critical tilt where it topples by itself. This concept can be transferred
to other cases including pore water and elastic solids, but the loss of stability is not yet well understood. The
mode of a collapse is principally determined by an eigenvector of the free enegy at the verge of convexity.
The subsequent granular chain reaction as a succession of eigenvalue problems is more complex by increasing
fractality.

The seismodynamic approach will be improved with refined energies, particularly for the verge of convexity.
For a while elastoplastic, hypoplastic and seismo-hypoplastic models will serve to the purpose as far as they are
validated and calibrated. The approach could also be applied to solids. Their acoustic emission in the ductile
(stable) regime indicates seismicity from micopores. Its intensity or seismocrasy (analog of Greek thermocrasia
= temperature) Ts enhances relaxation and dissipation so that stresses evolve with strain similarly as by (3).
This could support and improve elasto- and hypoplastic relations (PSM).

The indirectly audible seismic kinks may be called seismons as they resemble phonons in solids and re-
mind of radiactivity observed with a Geiger counter. The similarity to quantum mechanics may be more than
accidential, but we are far from a seismic counterpart of Schrödinger’s equation. The thermal activation by
phonons comes into play with very slow evolutions and/or softer solid particles. Quartz sand under tectonic



deformation with D � 10�13/s, e.g., has viscous creep-relaxation as phonons matter more than seismons. Clays
wih lower activation energies feel seismons and phonons likewise for geotechnicallly usual D. An extension of
(2) for thermal relaxation could support and improve viscoplastc relations (PSM).
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